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This paper returns to, and addresses, the question of identifying the nature of aerodynamic admittance
in relation to extended-span bridges in wind. Theoretical formulations for the sectional aerodynamic
forces acting upon the deck girder of a long-span bridge have conventionally been composed of the
sum of two kinds of terms: aeroelastic terms and bu!eting terms. The former employ frequency-
dependent coe$cients (&&#utter derivatives'') associated with sinusoidal displacements of the structure,
while the latter have typically been expressed in quasi-static terms with "xed lift, drag and moment
coe$cients. This inconsistency of formulation has required that at some point the bu!eting terms,
functions of gust velocity, be adjusted to a more compatible form through the introduction of the
so-called aerodynamic admittance factors that are frequency-dependent. The present paper identi"es
a form of these several section-force factors as functions of the #utter derivatives themselves.
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1. INTRODUCTION

AT THE PRESENT TIME EXTENSIVE theory exists for forecasting the aeroelastic response of
long-span bridges. Data in support of this theory are available in three categories:

(i) static and motional force coe$cients measured on a wind-tunnel section model of the
deck girder; (ii) computed natural bridge modes and frequencies of the whole structure; and
(iii) spectral and coherence descriptions of the cross-wind.

As has been repeatedly pointed out in the literature (Scanlan & Tomko 1971; Scanlan,
BeH liveau & Budlong 1974; Scanlan, Jones & Singh 1997; Simiu & Scanlan 1996), transfer-
ring the application of theoretical thin-airfoil motional force coe$cients to the blu! bodies
presented by bridge deck sections is basically incorrect from both mathematical and
physical viewpoints. Thin airfoil dynamic force theories depend on unique circulation
functions [such as those of Theodorsen (1935) and Sears (1941)] that cannot be realized for
blu! bodies that experience separated #ow.

It is therefore taken here for granted that the common use of the Sears admittance
function in the context of bridge deck bu!eting can, at best, be viewed only as a suggested
approximation. The Sears admittance function represents the dimensionless theoretical
frequency-dependent force spectral level of a thin airfoil, with wholly attached #ow,
penetrating a vertically oscillating gust "eld. While the use of the Sears function by
Liepmann (1952) in the airfoil context is technically correct, that by Davenport (1962) in the
bridge context is not. The present paper "rst brie#y reviews the main elements in the
description of the aerodynamic forces, emphasizing in particular the relation between
a form of aerodynamic admittance and the #utter derivatives. How these relations enter the
consequent aeroelastic analysis is then suggested.
0889}9746/99/101017#11 $30.00 ( 1999 Academic Press
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2. CONVENTIONAL SECTIONAL AERODYNAMIC THEORY

In the case of a bridge deck section with degrees of freedom h (vertical), p (lateral), and
a (twist) it has become conventional to separate the associated time-dependent sectional
force vectors into aeroelastic (ae) and bu!eting (b) contributions. Thus,

vertical lift: ¸"¸
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#¸

b
, (1)

horizontal drag: D"D
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b
, (2)

moment: M"M
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b
, (3)

where, for sinusoidal motion, the aeroelastic terms involve, in commonly used form (Sarkar
et al. 1994), up to six frequency-dependent aeroelastic or #utter derivative terms H*
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in which o is the air density,; the mean cross-wind velocity, B the deck width, K"Bu/;,
and u is the circular frequency of oscillation. This large array provides in advance for all
possible motional contributions. Experimental evaluation brings out which of the #utter
derivatives are important and which are not. Hence some formulations have been limited to
fewer terms.

The bu!eting forces have been written conventionally (Scanlan & Jones 1990) in quasi-
static terms:
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where C
L
, C

D
, C

M
represent force coe$cients, C@

L
, C@

D
, C@

M
their slopes versus wind vertical

attack angle a, and u and w the along-wind and vertical gust velocity components,
respectively. In this formulation C

L
and C

D
are in perpendicular and horizontal directions,

respectively. This conventional writing of the bu!eting forces implies association of a unit
aerodynamic admittance factor with each force component. This simpli"ed, useful, but often
incomplete formulation will be modi"ed at a later point.

3. HEURISTIC REEXAMINATION OF SECTIONAL FORCES

The basic conceptual formula for sectional lift at any instant is
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where ;
r
and C

L
may be considered variable, ;

r
representing the relative horizontal wind

velocity, lift ¸ being understood as vertical.
If the structural section has displacement components h vertical and p horizontal, and the

gust velocity components are u and w, then one may write

;
r
";#u!pR , (11)

while C
L

may be represented as a &&base'' value C
¸

0
plus an increment due to a small angular

change w!h/;:
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for C@̧
0
"dC
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/da, where C
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0
accounts for all lift contributions*such as mean, steady-state

or signature (internal structure-induced) e!ects*not due to the explicit horizontal and
vertical causes mentioned. Thus,
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which, if products of small quantities relative to ; are neglected, becomes
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This then represents a base value plus the variable lift contributions ascribable to the
speci"c horizontal and vertical e!ects mentioned.

It is important to emphasize the concept of gusting that is inherent in the above
formulation. Both the horizontal and vertical velocities u, w are assumed in this writing to
extend unchanged spatially over the full height or width, respectively, of the bridge deck
section in question. In other words, the assumption implicit in these expressions is that, over
the extent of the deck section geometry in either direction, vertical or horizontal, the gust
velocity is completely spatially coherent. This is a conservative assumption regarding
developed force values. It could, if desired, be modi"ed through the introduction of
coherence postulates, which will not be done here.

In equations (4)}(6) the assumed motion of h, p and a is purely sinusoidal. If this is
represented in the form e*ut then the particular freedoms h and p may be represented in
terms of hQ and pR as hQ /iu, pR /iu, respectively.

The time-varying terms of equation (14) may now be compared to the u, w, hQ and pR terms
in equations (1), (4) and (7), according to which the terms associated with vertical and
horizontal contributions to lift are, together:
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This suggests that in equation (14) the following equivalences are appropriate:
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These recognize the inherent phasing and frequency dependence required of C
¸

0
, C@̧

0
.

By analogous reasoning applied to drag and moment expressions, the following equiva-
lences are also suggested:
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This conversion alters the bu!eting force terms to the form
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From these, the autospectrum S
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of lift becomes
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where S
uw

is the cross-spectrum of u and w.
Those for drag and moment are constituted similarly:
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where S
uw

is the cross spectrum of u and w.
If earlier formulations (22)} (24) are referred to, and the cross-spectra of u and w are

neglected, the results corresponding to expressions (25}27) above were
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where frequency-dependent correction factors s2, aerodynamic admittances, have been
incorporated to account for frequency dependence. This formulation is seen to be super-
seded by equations (25)}(27). In fact the notion of aerodynamic admittance is clari"ed by
this process; it suggests that a concept of aerodynamic admittance can be viewed as de,ned in
terms of -utter derivatives, which imply the following de"nitions:
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Figure 1. Representative aerodynamic admittances: (1) unitary (for quasi-static gust forces); (2)
example corresponding to H*

1
of Figure 2; (3) classic Sears function.
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These formulas suggest relationships that have not to-date been widely demonstrated by
available data. Two brief illustrations may, however, be given. If H*

1
is proportional to 2n/K

(as is sometimes the case) and H*
4

is negligible (also reasonable), then the admittance s2
L{

has
a constant unit value as in quasi-steady theory; (see curve 1, Figure 1). If, as a further
example, H*

1
is as illustrated in Figure 2 for a realistic case for which C@

L
"4)11 per radian,

with H*
4

again negligible then s2
L{

evolves as shown in curve 2, Figure 1, which evidences
a trend resembling somewhat that of the Sears function, curve 3 of Figure 1.

The point of the present discussion is to open up a promising vector of investigation.

4. TIME-DEPENDENT ANALYSIS OF SECTIONAL AERODYNAMIC
EFFORTS

The discussion in this section essentially reviews and arrives at the same results as the
analysis of the preceding section but from a transient-aerodynamic viewpoint. ¸ift as
a representative case will be examined "rst.

Consider a deck section undergoing a vertical velocity hQ (t) and simultaneously the impact
of a vertical gust w(t) . The net e!ective vertical wind angle of attack h is then

h"
w!hQ
;

(37)



Figure 2. Typical #utter derivative H*
1

for bridge deck.
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and the corresponding transient lift is
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where s";t/B is dimensionless time, C@
L
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/dh and I (s) is the lift-growth integral:

I (s)"P
s

~=

'(s!p) h@(p) dp (39)

in which h@(p)"dh/dp and '(s) is an appropriate &&indicial'' function.

4.1. THE FLUTTER CASE, w"0

Information on ' may be obtained from the standard #utter case in which w"0,
conventionally written (4) as
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where H*
1

is a #utter derivative and hQ is purely sinusoidal.
With the change of variable s!p"q, I(s) may be written as
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where
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This yields the net relation
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4.2. THE BUFFETING CASE, hQ "0

We now consider the alternate case in which h"w/; and hQ "0.
In this case
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of which the Fourier transform is
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Multiplying M̧ by its complex conjugate, it can immediately be demonstrated that the auto-
PSD of lift is
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Recalling the quasi-steady expression for bu!eting lift,
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which leads to the lift spectrum
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as &&corrected'' by the admittance factor s2
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, it can be seen that the latter is de"ned [see
equation (25)] by
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where the relation of s2
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to '@ is
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Clearly, the analogous expressions for admittances s2 in equations (31)}(36) are derivable
by similar methods. The analysis of this section, while con"rming that of the preceding,
further links aerodynamic admittance directly to its associated indicial function source.
Connections of this character were underscored by Scanlan (1984, 1993).

5. SINGLE-MODE FLUTTER AND BUFFETING

Although multi-mode analyses are now routinely performed (Jain et al. 1996; Katsuchi et al.
1998a, b), attention will be con"ned here to some remarks on the general process, with focus
only on single-mode response.
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5.1. EQUATION OF MOTION

This, with arbitrarily limited choice of #utter derivatives, is
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and where the bu!eting terms L, D, M will be described later. Note that this form
conservatively implies full coherence of #utter derivative action along the span. Alternative
choices are easily and routinely incorporated, as desired.

5.2. FLUTTER

With damping restricted to only the principal elements the single-degree #utter criterion
reduces to
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5.3. BUFFETING

Rewriting equations (52) and (53) yields the form
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where damping f
i
and frequency u
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have been replaced by c
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The Fourier transform of equation (56) is
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Multiplying equation (59) by its complex conjugate yields
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It is at this point that the newly introduced concept of admittance enters the analysis. The
lift (L), drag (D) and moment (M) factors above depend on the horizontal and vertical (u, w)
components of gusting and are written in their new forms [see equations (22)}(24)]:
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The details of gust analysis proceed from this point. What has been stated above constitutes
an abbreviated overview of how the newly de"ned aerodynamic admittances enter the
bu!eting problem. The details will not be pursued in the present paper.

6. SUMMARY AND CONCLUSION

The present paper "rst derives and emphasizes the natural analytical relationships between
corrective aerodynamic admittances associated with gust forces and certain well-known
#utter derivatives. The roles and implications of these relationships are then suggested by
brief remarks on the theoretical steps of #utter and bu!eting analyses. Particularly, the
proper role of aerodynamic admittances as well-de"ned frequency-dependent functions
intrinsic to the analysis, rather than arbitrarily imposed external correction factors, is
emphasized. The paper opens new avenues of investigation in which the e$cacy of the
proposed rationale for aerodynamic admittance can be more closely examined.
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APPENDIX: NOMENCLATURE

A*
i

twist #utter derivative
B deck width
D sectional drag force
D dimensionless drag factor, bu!et
Gq

i
q
i

modal integral (q
i
"h

i
, p

i
or a

i
)

H*
i

vertical motion #utter derivative
h sectional vertical displacement
h
i
(x) deck horizontal component, mode i

I
i

generalized inertia of entire bridge
K Bu/;
¸ sectional lift force
L dimensionless lift factor, bu!et
l bridge span
M sectional moment
M dimensionless moment factor, bu!et
n frequency in Hz
P*
i

sway #utter derivative
p sectional lateral displacement
p
i
(x) deck sway component, mode i

Q
i

generalized modal force, mode i
s dimensionless time or distance, ;t/B
S
uu

power spectral density of horizontal (u) gust component
S
ww

power spectral density of vertical (w) gust component
S
uw

cross-power spectral density of u, w gust components
t time
; cross wind velocity
u horizontal gust velocity
w vertical gust velocity
x spanwise coordinate along deck
a sectional rotation
a
i
(x) deck twist component, mode i

c
i

aerodynamics-in#uenced total damping ratio, mode i
f
i

mechanical damping ratio of mode i
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h general wind angle of attack
m
i

generalized coordinate of mode i
% gust cross-coherence integrand
o air density
q integration variable
' indicial force-growth function
'@ d'/ds
s2 aerodynamic admittance factor
u circular frequency of oscillation (#utter)
u

i0
circular frequency of oscillation (bu!et)

u
i

natural circular frequency of mode i
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